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Adaptive histogram equalization (ahe) is a contrast enhancement method designed to be 
broadly applicable and having demonstrated effectiveness. However, slow speed and the 
overenhancement of noise it produces in relatively homogeneous regions are two problems. We 
report algorithms designed to overcome these and other concerns. These algorithms include 
interpolated ahe, to speed up the method on general purpose computers; a version of 
interpolated ahe designed to run in a few seconds on feedback processors; a version of full ahe 
designed to run in under one second on custom VLSI hardware; weighted ahe, designed to 
improve the quality of the result by emphasizing pixels' contribution to the histogram in 
relation to their nearness to the result pixel; and clipped ahe, designed to overcome the 
problem of overenhancement of noise contrast_ We conclude that clipped abe should become a 
method of choice in medical imaging and probably also in other areas of digital imaging, and 
that clipped ahe can be made adequately fast to be routinely applied in the normal display 
sequence. © 1987 Academic Press, Inc. 

1. INTRODUCTION 

Adaptive histogram equalization (ahe) is an excellent contrast enhancement 
method for both natural images and medical and other initially nonvisual images. In 
medical imaging its automatic operation and effective presentation of all contrast 
available in the image data make it a competitor to the standard contrast enhance- 
ment method, interactive intensity windowing. In fact, observer studies [9, 8] 
indicate that for certain image classes, intensity windowing has no significant 
advantages in local contrast presentation in any contrast range, while ahe has 
advantages of being automatic and reproducible, and requiring the observer to 
examine only a single image. 

The basic form of the method was invented independently by Ketcham et al. [6], 
Hummel [5] and Pizer [7]. In this basic form the method involves applying to each 
pixel the histogram equalization mapping based on the pixels in a region surround- 
ing that pixel (its contextual region). That is, each pixel is mapped to an intensity 
proportional to its rank in the pixels surrounding it. But the basic method is slow, 
and under certain conditions the enhanced image has undesirable features. There- 
fore, this paper presents algorithms for ahe that increase its speed on various 
processors, and it presents variations on ahe that are intended to improve the 
enhanced image, along with summaries of the effectiveness of these variations. 
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FIG. 1. Sample points (*) for mapping computation, and evaluation point (O). 

2. SPEEDUP BY SAMPLING AND INTERPOLATION 

In its basic form ahe requires time O(n2(m + k)) for an n × n image with a 
range of k intensity levels and an m x m contextual region size. A major speedup 
can be obtained by calculating the desired mapping only at a sample of pixels and 
interpolating the mapping between these sample locations. In our work the sample 
locations at which the mapping is computed are on a grid, and the resulting 
mapping at any pixel is interpolated from the sample mappings at the four 
surrounding sample-grid pixels (see Fig. 1). Thus, if the pixel mapped is at location 
(x, y)  and has intensity i, and m+_ is the mapping at the grid pixel (x+, y_) to the 
upper right of (x, y) and similarly with subscripts + +,  - +,  and for the 
mappings and locations of the grid pixels to the lower right, lower left, and upper 
left respectively of (x, y), then the interpolated ahe result is given by 

m(i) = a[bm__(i) + (1 - b)m+_(i)] + [1 - a][bm_+(i) + (1 - b)m++(i)], 

where 

a= (y - y _ ) / ( y + -  y_) and b= ( x -  x ) / ( x + -  x_). 

Pixels in the borders of the image outside of the sample pixels need to be handled 
specially, using linear interpolation of the mappings at the two closest points or, in 
the corners where there is only a single close sample pixel, application of only one 
mapping. 

With such an interpolated ahe there are two parameters, the size of the contextual 
regions and the spacing of the sample grid. We will discuss each of these in turn. 

2.1. Contextual Region Size 

In the interpolative mapping procedure each result pixel is derived by applying 
four mappings, those associated with four surrounding sample points. Each of those 
sample points has an associated contextual region, so it can be said that the result 
pixel in question has a region affecting its value that is the union of the four 
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FIG. 2. Results for interpolative ahe of a chest CT scan, with the same ECRs: (a) full sampling (no 
interpolation); (b) mosaic sampling. 

b) g 

L 
FIG. 3. Contextual regions and their centers: (a) mosaic; (b) half-overlapped. 
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associated contextual regions of its sample points. Let us call this affecting region 
the equivalent contextual region (ECR). We have found empirically (see Fig. 2) that 
different versions of the method with the same ECR produce approximately the 
same result. Thus, for example, if the sample grid point spacing is the same as the 
contextual region linear dimension, thus forming a mosaic of contextual regions 
within the image (see Fig. 3a), then uninterpolated (basic) ahe with contextual 
region area A (and thus ECR A) produces approximately the same results as 
interpolated ahe with contextual region area A/4  (and thus ECR A). Similarly, if 
the sample grid point spacing is half that of the contextual region linear dimension 
(see Sec. 2.2 and Fig. 3b), interpolated ahe with contextual region area 4A/9 will 
produce about the same result as the two cases just mentioned. As a result of this 
fact, we will henceforth refer to sample-based methods in terms of their ECR. 

As the ECR area increases, the method becomes less and less locally sensitive but 
for interpolative ahe more and more efficient. As the ECR area decreases, the image 
contrast improves up to a point. For a wide range of medical images this optimal 
ECR area is between ~ and 6~ of the image, with the smaller region chosen only 
when the feature size of interest is quite small. ECR areas intermediate between 
and {4 of the image area produce results not importantly different from that using 
of the image, because the image appearance changes only slowly with ECR area. If 
the ECR is much less than {4 of the image, the contrast becomes too sensitive to 
very local variations and, in particular, to image noise. This oversensitivity to local 
variations can cause artifacts, which have never been experienced with the preferred 
ECRs. 

With these values for ECR interpolative ahe of a 512 × 512 image requires less 
than two minutes for a C program on a VAX 11/780 or an assembly language 
program on a small 16-bit minicomputer. This is a savings of well over an order of 
magnitude over ahe with full sampling. 

2.2. Contextual Region Sampling Rate 

We have evaluated sampling in each dimension at a distance equal to the 
contextual region linear dimension (so that the sample regions divide the image into 
a mosaic--see Fig. 3a), at half this distance (see Fig. 3b), and at one pixel (full 
sampling). This advantage of sampling at half the contextual linear dimension is 
that, unlike with mosaic sampling, each pixel contributes to the histograms of all 
four sample contextual regions whose mappings are applied to that pixel [4]. 

Of course, the coarser the sampling, the faster the results are computed. Although 
test pattern images can be created where finer than mosaic sampling is desirable to 
produce adequate quality, we have never found an image of the complexity of 
clinical medical images for which mosaic sampling was not effectively equivalent to 
the finer sampling for the same ECR. 

3. ALGORITHMS FOR SPECIAL IMAGE PROCESSING DEVICES 

3.1. Feedback Architecture 

Image processing devices with a feedback architecture, such as those manufac- 
tured by Comtal, DeAnza, and Vicom, can do simple operations on one or more 
whole images in a frame display time, commonly ~0 s. The following algorithm for 
interpolated ahe appears to be especially well suited to such devices. The algorithm 
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FIG. 4. Region and parameter definitions for Program 1. R36 is a contextual region, and S36 is the 
corresponding mapping region. N x = Nv = 8 is equivalent in ECR to full ahe with N x = Nv = 4. 

is based on computing and applying each histogram equalization mapping from a 
contextual region R u before moving on to the next. After all of the mappings have 
been applied, each pixel will contain the result of each of the four mappings 
applicable to it. A bilinearly weighted average of these four results is then calculated 
at each pixel. We will assume mosaic sampling, although the program can be 
modified to work for other samplings. 

With mosaic sampling and bilinear interpolation of the mapping, the region made 
up of pixels to which a given mapping must be applied is a rectangle concentric with 
the corresponding contextual region but twice its size in each dimension (see Fig. 4). 
Let us call this region the mapping region, Su, corresponding to the m x × my 
contextual region R u and the mapping L u. Let i = 1, 2 , . . . ,  N x index the contex- 
tual regions in the x dimension, and j = 1, 2 , . . . ,  Ny index the contextual regions in 
the y dimension. 

Consider the following four sets of mapping regions: (Suli odd, j odd), 
(Sqli even, j odd), (Suli even, j odd), (Suli even, j even). Each of these form an 
image that is a mosaic of mapped results from alternate contextual regions in each 
dimension (see Fig. 5). We name these four intermediate mosaic images: Mkl(x, y), 
for k = 0, 1 and L = 0, 1; oddness or evenness of k and l, respectively, corresponds 
to Sq with odd or even i and j, respectively. The four mapped values Mkl(x, y) at 
pixel x, y are the four values to be combined with bilinear weights to produce the 
final value M(x, y). The borders of the images, where some Mkl is undefined must 
be treated specially. 

In the center region A where all of the Mkt are defined (see Fig. 5), the bilinear 
weights as a function of x, y are the same for each intermediate image Mkl(x, y) 
except that each is shifted with respect to the other, in x for different k and in y for 
different l, by the distance between two adjacent contextual region centers in the 
respective dimension. Also, for any k, l the bilinear weights are cyclic with a period 
in each dimension equal to twice the distance between two adjacent contextual 
region centers in the respective dimension, 2m x or 2my. The weight function for one 
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FIG. 5. The image area divided into the mosaic images Moo ( - - - - ) ,  M0x ( . . -  ), M10 ( - - ) ,  and Mll 
( - . - ) ,  their common center area A, their border regions, BkH and Bkv, and the comer regions Ck/. 

period is the product of triangles in x and y, each going from 0 to 1 and then back 
to 0 across one period: the full two-dimensional period is defined by 

xyperiod( x, y) = xperiod( x ) * yperiod( y ), where 

xperiod(x) = X/mx, for x between 0 and m~, 

xperiod(2 * m x - x) = xperiod(x), for x between 1 and m x - 1, 

and yperiod(y) is defined by a similar expression, with y replacing x throughout. 
Assume that a single two-dimensional period of the weights has been computed• 

Application of these weights can be accomplished directly by reference to this 
period, or from an image W(x, y) consisting of (N x + 1)/2 × (Ny + 1)/2 periods 
of xyperiod(x, y). The weighting functions for the Mkl are each a subimage of 
W(x,y) ,  each specifiable by its upper left pixel (origin) in W. 

In the mx/2  × my~2 corners of the image, Ckt, the result image has the values of 
the mosaic images M~t. In the remaining border areas Bkn and Bkv, the result is a 
weighted average of the two Mkl that overlap in that border, with weights respec- 
tively being xperiod(x) and a shifted version of xperiod(x), for horizontal border 
areas, and yperiod(y) and a shifted version of yperiod(y), for vertical border areas. 

Letting I(x,  y) be the intensity at x, y in the input image, and assuming the 
"image" W(x, y) as well as the arrays xperiod(x) and yperiod(y) have already 
been computed, the program to apply abe on feedback processors is summarized in 
Program 1. 

PROGRAM 1. Ahe for feedback processors. 

/ *  Compute and apply mappings, histogram by histogram. * /  
k = 0  
For i = 1 to N x 

{ k = k + l ( m o d u l o 2 ) ;  / = 0  
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For j = I to IVy 
{ l = l + 1 (modulo 2) 
Compute H = histogram (R i j) 
Compute L = lookup table which is histogram equalization 

mapping corresponding to H = (cumulative 
histogram * output display range/(mxrny)) 

For all x,y ~ Sig 
{Mkt(x, y) = L(I (x ,  y))} 

}} 

/ *  Weight temporary images by modified bilinear weighting function, and sum 
results. * /  

Zero M(x,  y)  
F o r k = 0  t o l  { F o r l = 0 t o l  

/ *  Multiply Mkt by the appropriate part of W, and add the result into 
M */  

{ For all x,y 
{ M(x, y) = M(x, y) + Mkl(x, y)* W(mx/2  + k * rnx + x, 

my/2 + l * my + y)} 
}} 

/ *  Fix up corners and borders. * /  
F o r k = 0  t o l  { F o r l = 0 t o l  

{For all x,y ~ Ckl 
{ M(x, y) = Mkl(x, y)} 

} 
For all x, y ~ BkH 

{ m(x,  y) = xperiod(mJ2 + x)* Mko(X, y) 
+xperiod(3* mx/2 + x)* Mkl(x, y)) 

For all x, y ~ Bkv 
{ m(x ,  y) = yperiod(my/2 + y)* Mok(X, y) 

+yperiod(3* my/2 + y)* Mlk(x, y)} 

Note that only two consecutive rows of contextual regions are necessary to 
compute m v pixel rows of the final result M. Each additional consecutive row of 
contextual regions suffices to complete the computation of my additional pixel rows 
of the Mk/ and thus M, as well as the computation of my pixel rows of two 
additional Mkt. Thus with the storage necessary for 2my pixel rows of each of the 
Mk~, M, and I, the ahe result could be successively computed. Therefore, this 
method can apply ahe to an image Nv/2 times as large as would be needed if 
Program 1 were applied directly. In fact; since one could step one contextual region 
at a time in the horizontal direction, as well, while handling the second m v pixel 
rows of the various images, the factor by which the image size could be increased 
could be even NxNy/(N x + 2). 

The speed of Program 1 on a feedback processor depends on whether each pixel 
in a single pass through the image can contribute to or be mapped by a different 
mapping or all the pixels must share the same mapping. On the latter, more 
conservative assumption, NxN v passes through the image would be required to 
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calculate all of the histograms, and the same number of passes would be required to 
apply the mappings. Four additional passes would be necessary to compute the 
bilinearly weighted Mkl, and three more to sum these results. Neglecting the time in 
computing the mappings from the histograms, 2NxNy + 7 passes would be required; 
for the common value for mosaic-sampled interpolative ahe of N~ = ivy = 8 and 
pass time of ~0 s, about 4.5 s would be required to apply this algorithm. If each pixel 
could contribute to or be mapped by a different mapping in a single pass through 
the image, the histograms could be computed in one pass and the mappings applied 
in four passes (both independent of N x and Ny), for a total of 12 passes or about 
0.4 s. 

3.2. Processor-per-Pixel Architecture 

Another interesting architecture involves a small processor at each pixel and the 
ability to broadcast a value to all pixels simultaneously [1]. With such devices the 
following algorithm for uninterpolated ahe, based on computing each pixel's rank in 
its contextual region, is very fast. 

Let Qxy be the set of pixels u, v for which the pixel at (x, y) is in the contextual 
region of that at (u, v). (For contextual regions that are symmetric, Qxy is the same 
as the contextual region about (x, y).) Let rankxy be the rank of pixel x, y in its 
contextual region, the value to be computed. 

PROGRAM 2. Ahe for per-pixel parallel processors. 

For x, y in the image 
{Zero rankxy } 

For x, y in the image 
{For u, v in Qxy 

{If i(x, y) < i(u, u 
then rank uv = rank uv + 1) 

} 

The total algorithm takes a time proportional to the number of pixels, if one uses 
an engine in which each pixel value I(x, y) is broadcast in parallel to all the other 
pixels, and those in Qxy which have greater intensity values have a rank counter 
incremented in parallel. We presently have a design of a VLSI-based engine that 
could accomplish ahe for a 512 x 512 image in under 1 s. This engine can operate 
with a memory large enough to hold only my pixel rows of the image, i.e., 1 Ny of 
the total image. 

4. QUALITY IMPROVEMENTS 

4.1. Weighted Ahe 

It seems unattractive for the contextual region of ahe to end abruptly. If it does, 
one pixel is in the region, affecting the mapping of the pixel at the center of the 
region, and its neighbor has no effect on that mapping. Furthermore, it seems 
reasonable that the pixels near the pixel whose mapping is being calculated (the 
"center" pixel) should affect the mapping more than those farther away. Therefore, 
we have created and evaluated a form of ahe in which pixels' contribution to a 
histogram decreases with their distance from the center pixel. 
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In this weighted ahe the ECR was calculated with the area of each pixel weighted 
by N w i / W ,  where N is the number of pixels in the contextual region, w i is the 
weight the pixel contributes to the histogram, and W is the sum of the w,. This 
method of calculating the ECR proved to give a value that made the effect of a 
contextual region with a given weighting scheme very close to that of an unweighted 
contextual region with the same ECR. 

Weighted ahe with a conical weighting function was applied to a number of CT 
scans of various types, including those with sharp, strong boundaries. Little dif- 
ference was noticeable when compared to ordinary ahe with the same ECR. Because 
weighted ahe is much more time consuming, we do not recommend its use. 

4.2. Contrast Limitation 

Ahe has produced excellent results in enhancing the signal component of an 
image, but noise in the image is enhanced, too. There has been considerable debate 
about whether or not enhancing noise is really a problem. Controlled tests with 
simple test patterns indicate that enhancing noise proportionately with signal does 
not impair an observer's ability to detect information in an image [2]. However, 
clinicians who routinely examine images have indicated that noise enhancement is 
very disturbing and does cause problems. We decided to investigate the effects of 
limiting contrast enhancement in cases when the noise would otherwise become too 
apparent. This occurs when the range of image intensities in a contextual region is 
not a good deal greater than the noise level, i.e., in relatively homogeneous regions. 

Contrast enhancement can be defined as the slope of the function mapping input 
intensity to output intensity (see Fig. 6). We will assume that the range of input and 
output intensities are the same. Then a slope of 1 involves no enhancement, and 
higher slopes give increasingly higher enhancement. Thus the limitation of contrast 
enhancement can be taken to involve restricting the slope of the mapping function. 

With histogram equalization the mapping function m(i)  is proportional to the 
cumulative histogram (e.g., [3]): 

m (i)  = ( Display_ Range) * (Cumulative_Histogram ( i )/Region_ Size). 

Since the derivative of the cumulative histogram is the histogram, the slope of the 
mapping function at any input intensity, i.e., the contrast enhancement, is propor- 
tional to the height of the histogram at that intensity: 

dm/di  = (Display_Range~Region_Size) • histogram ( i ). 

Therefore, limiting the slope of the mapping function is equivalent to clipping the 
height of the histogram. 

High peaks in the histogram are normally caused by nearly uniform regions. In 
such a case, with the mapping due to ordinary histogram equalization a narrow 
range of input intensity values is mapped to a wide range of output intensity values, 
perhaps overenhancing the noise. But enforcing a maximum on the counts in the 
histogram will limit the amount of contrast enhancement and thus the enhancement 
of noise. 

When contrast enhancement is reduced at one location it must be increased in 
other areas so that the entire input intensity range will be mapped to the entire 
output intensity range. This corresponds to renormalizing the histogram after 
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clipping so that its area returns to its original value. We think of this as redistrib- 
uting the clipped pixels. 

We have tried two means of redistributing the clipped pixels: uniformly distrib- 
uting them in all histogram bins, and distributing them into bins with contents less 
than the clipping limit in proportion to their contents. The latter technique shares 
the intuitive advantage with ahe that contrast enhancement is in proportion to need 
for contrast enhancement, but it is complex and results in an undesired property: 
that the mapped intensity throughout the image can be strongly changed by moving 
one pixel from its original intensity to another in a bin that was formerly empty. 
Therefore, we have chosen the option of uniform redistribution of clipped 
pixels--across the full intensity range of the whole image. This option can be 
thought of as adding the contrast mapping due to the clipped histogram to a linear 
mapping that achieves just the height at the maximum image intensity such that the 
height of the sum is equal to the intensity range in the original image (see Fig. 6). 

Incorporation of histogram clipping into the existing ahe algorithm is straightfor- 
ward. One need only insert a histogram modification step into the algorithm. After 
each histogram for a contextual region is computed, it is clipped to some value 
before the mapping function is computed from it by calculating a cumulative 
histogram or, equivalently, ranks. 

The user determines the clipping limit by specifying the limiting slope S of the 
intensity mapping. The clipping limit C can be shown to be S times the average 
histogram bin contents, since a slope of 1 corresponds to all bins having the same 
(average) value and slope is proportional to the value of a histogram bin. 

Adding a uniform level L to the clipped histogram will push the clipped 
histogram again above the clipping limit, so the original histogram needed to be 
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clipped at a lower limit P such that P + L ( P )  is equal to the clipping limit (L  is 
written as a function of P because it depends on P). The value of P that satisfies 
this equation can be found by the binary search given in Program 3. 

The resulting value of bottom is an integer, to which the remaining excess S 
divided by 

PROGRAM 3. Calculation of actual clipping limit. 

Let C be the clipping limit and R the number of histogram bins in the total image 
top = C 

bo t tom = 0 

while ( top - bo t tom > 1) 
{ middle  = ( top + b o t t o m ) / 2  

S = sum over all histogram bins of the excess in that 
bin over middle, if any 

if S > ( C - middle)  * R 

then top = middle 

else bottom = middle 

FIG. 7. (A) Original image; (B) interactively windowed result; (C) unclipped ahe result; (D) clipped 
ahe result with clipping limit 10, for a CT of the abdomen. 
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c 

FIG. 8. Results of clipped abe (left) vs results of intensity windowing (right): (a) CT of chest; (b) 
surface coil MRI of spine; (c) X-ray angiogram. 

the number of bins R must be added to produce the desired P. L is equal to the 
clipping limit minus P. Then the modified histogram value v in any bin is calculated 
from original value Vo~ig by 

0 ---- 
Vo~i~ + L if Vo~i~ < P 

C if Vo~i~ > P. 

The clipped ahe technique has been applied to several different medical images, 
and the results to date have been encouraging. In Fig. 7 an original image and 
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images processed with ordinary and clipped ahe, and interactive windowing are 
compared. Figure 8 compares interactively windowed images with those processed 
with clipped ahe. Note not only the contrast in all organs simultaneously, but also 
the ability to lessen the effects of nonuniform sensitivity, as in MRI images from 
surface coils. 

5. SUMMARY 

Numerous improvements to adaptive histogram equalization in speed or quality 
have been suggested. As for quality, clipped ahe has had great success in both 

(a) showing in a single image all contrast in electronically recorded images 
whose range is too wide for a nonadaptive mapping to succeed, and 

(b) showing contrast hidden in images initially recorded on film. 

This method seems to have the potential of being applicable to all medical images, 
although the clipping level must vary (apparently in a presettable way) with the 
imaging modality, body region imaged, and imaging variables. The method has been 
used with considerable success with light images as well. 

As for speed; 

(a) If you have a general purpose computer, interpolative clipped abe with 
mosaic sampling is the method of choice, requiring a few minutes per megapixel on 
common minicomputers. 

(b) If you have access to a system with a feedback processor, a considerable 
increase in speed can be obtained by using Program 1, with each histogram 
calculation followed by the clipping step before the corresponding mapping is 
computed. This requires around 20 s per megapixel with standard feedback 
processors doing arithmetic on a full frame in ~ s. 

(c) Looking toward the future, a VLSI-based processor-per-pixel design seems 
to be very attractive, because not only can it compute ahe in a few seconds per 
megapixel, but also it can do a wide range of other image processing operations fast 
[1]. 
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