The use of vermicompost in organic farming: overview, effects on soil and economics

Su Lin Lim, Ta Yeong Wu,* Pei Nie Lim and Katrina Pui Yee Shak

Abstract

Vermicomposting is a process in which earthworms are used to convert organic materials into humus-like material known as vermicompost. A number of researchers throughout the world have found that the nutrient profile in vermicompost is generally higher than traditional compost. In fact, vermicompost can enhance soil fertility physically, chemically and biologically. Physically, vermicompost-treated soil has better aeration, porosity, bulk density and water retention. Chemical properties such as pH, electrical conductivity and organic matter content are also improved for better crop yield. Nevertheless, enhanced plant growth could not be satisfactorily explained by improvements in the nutrient content of the soil, which means that other plant growth-influencing materials are available in vermicomposts. Although vermicomposts have been shown to improve plant growth significantly, the application of vermicomposts at high concentrations could impede growth due to the high concentrations of soluble salts available in vermicomposts. Therefore, vermicomposts should be applied at moderate concentrations in order to obtain maximum plant yield. This review paper discusses in detail the effects of vermicompost on soil fertility physically, chemically and biologically. Future prospects and economy on the use of organic fertilizers in the agricultural sector are also examined.

Keywords: earthworms; vermicomposting; organic fertilizer; nutrients; plant development; waste management

INTRODUCTION

Waste management systems are significantly influenced by socio-economic, political and environmental factors, including population growth, consumption pattern and technological development of waste systems.1 Thus, in many countries, both energy and waste management systems are changing.2 For example, European countries such as Austria and Netherlands are shifting away from landfilling and move towards recycling because of scarcity of land and the value of wastes.3 Currently, a number of studies have been conducted by different researchers on the ‘zero waste’ concept,4 because the importance of sustainability is being emphasized globally so that the needs of the present generation can be met without compromising the ability of future generations to meet their own needs.5 The ‘zero waste’ concept may involve reutilization of organic residues produced from agriculture, municipal and industrial wastes as resources rather than treatment or disposal of the wastes directly.6

Biological processes such as composting and vermicomposting have been widely recognized in converting organic materials into nutrient-rich fertilizer and soil conditioner.7 The composting process is a spontaneous biological decomposition of organic wastes in an aerobic environment.7 Similarly, vermicomposting is also an organic waste decomposition process but with the addition of earthworms to aid the waste stabilization process. This process involves symbiotic interaction between earthworms (e.g. Eisenia fetida, Eudrilus eugeniae and Perionyx excavatus) and microorganisms to produce a stable, homogeneous and humus-like end product known as vermicompost.7,8 Earthworms condition the substrate and alter the biological activity for further biochemical degradation of organic matter by microorganisms.9 In general, vermicompost is physically, nutritionally and biochemically improved over traditional compost10 because the mineralization rate of organic matter is accelerated and a higher degree of humification can be obtained through vermicomposting.11 Also, in comparison with composting, vermicomposting of organic wastes yields two useful products, namely earthworm biomass and vermicompost, which are produced in less processing time.7

By combining both composting and vermicomposting, the integrated process can be made an option for biodegrading solid wastes. Generally, the integrated system between composting and vermicomposting is used to enhance pathogen control and produce organic fertilizer at a faster rate than either of the individual processes. The composting stage in this integrated system ensures that the produced fertilizer meets the Environmental Protection Agency’s temperature requirement for killing pathogens12 during the thermophilic phase, while the subsequent vermicomposting process reduces particle size and increases nutrient availability at a higher rate due to the activity of the earthworms.13 Fornes et al.14 compared the physical and chemical characteristics of tomato crop waste for composting, vermicomposting and a combination of both processes. It can be deduced that composting, vermicomposting and a combination of both were suitable options for organic waste management and valuable for horticultural purposes. A recent study conducted by Wang et al.15 reported that combined composting and vermicomposting with reed straw
and zeolite addition would be a recommended method to dispose of duck manure and reduce ammonia and greenhouse gas emissions, as well as to provide nutrient-rich products as organic fertilizers.

Excessive use of inorganic fertilizers without organic supplements not only deteriorates the physical and chemical properties of soil but also pollutes the surrounding environment. For example, the use of inorganic fertilizer can cause excessive leaching of nutrients and salinity-induced plant stress. Manivannan et al. found that the application of inorganic fertilizer alone on soil significantly reduced the total microbial activity, porosity, particle and bulk density of soil. Schulz and Glaser also concluded that an addition of inorganic fertilizer to a sandy soil under high precipitation was useless as most of the nutrients were leached rapidly, with severe negative effects for economy and water contamination. However, a recent study showed that the combined use of organic and inorganic fertilizers maintained the highest soil quality index (SQI) of 1.10, followed by an application of 100% organic fertilizer (SQI = 1.08). On the other hand, the application of vermicompost can directly modify the physicochemical properties of agricultural soil, which is advantageous to the development of plants as a whole.

Vermicomposting itself cannot be considered as a new technology. In respect to various solid waste management strategies, vermicompost is gaining interest as a greener replacement or integration with chemical fertilizers to maintain and further improve soil quality. However, recent studies on the responses of vermicompost to the properties of soil and plant growth are generally limited. Researchers who investigated the effect of vermicompost on soil properties and plant growth include Singh and Wasnik, Bachman and Metzger, Lazcano et al. and Shahi. Thus, in this review paper, the nutrients in vermicompost and its effects on the physicochemical and biological properties of the soil are discussed.

NUTRIENTS IN VERMICOMPOST

Total nutrient contents in vermicompost depend upon the characteristics of the raw material. However, the macronutrients and micronutrients in vermicompost are generally higher than in traditional compost produced from the same raw material (Table 1). This is because, although raw material is mainly decomposed by microorganisms, earthworms also influence the process as they may affect microbial activity by grazing directly on the microorganisms. Furthermore, raw material which has undergone vermicomposting is generally more granular in shape, with greater surface area due to the digestion and fragmentation by the earthworms. These activities may enhance organic matter turnover rate and productivity of microbial communities, thereby enhancing the rate of decomposition as compared to the biodegradation system without the presence of earthworms. In fact, vermicompost contains a rich source of macro- and micronutrients, vitamins, enzymes, antibiotics, growth hormones and immobilized microflora, which are readily soluble in the water.

Carbon is the main element present in organic matter. Nutrient balance in vermicomposts is based on the quality of C and C/N ratio. A C/N ratio of <20 indicates an advanced degree of organic matter stabilization and reflects a satisfactory degree of organic waste maturity. Part of the carbon is released as carbon dioxide during the vermicomposting process, while the production of mucus

<table>
<thead>
<tr>
<th>Nutrient content</th>
<th>Organic carbon (%)</th>
<th>Nitrogen (%)</th>
<th>Phosphorus (%)</th>
<th>Potassium (%)</th>
<th>Calcium (%)</th>
<th>Magnesium (%)</th>
<th>Zinc (mg/kg)</th>
<th>Copper (mg/kg)</th>
<th>Iron (mg/kg)</th>
<th>Manganese (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetable waste</td>
<td>10.30</td>
<td>0.85</td>
<td>0.15</td>
<td>1.96</td>
<td>1.96</td>
<td>0.80</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Kitchen Waste</td>
<td>7.37</td>
<td>0.70</td>
<td>0.15</td>
<td>1.79</td>
<td>1.79</td>
<td>0.68</td>
<td>0.51</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>Green and pruning residues</td>
<td>–</td>
<td>2.05</td>
<td>0.38</td>
<td>1.21</td>
<td>1.21</td>
<td>0.83</td>
<td>0.41</td>
<td>1.15</td>
<td>1.15</td>
<td>–</td>
</tr>
<tr>
<td>Can trash</td>
<td>–</td>
<td>0.30</td>
<td>0.15</td>
<td>1.50</td>
<td>1.50</td>
<td>0.65</td>
<td>0.51</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Market waste</td>
<td>–</td>
<td>1.20</td>
<td>0.30</td>
<td>0.83</td>
<td>0.83</td>
<td>0.51</td>
<td>0.51</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>Paddy straw</td>
<td>–</td>
<td>2.30</td>
<td>0.30</td>
<td>1.32</td>
<td>1.32</td>
<td>0.60</td>
<td>0.60</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>Market waste</td>
<td>–</td>
<td>2.30</td>
<td>0.30</td>
<td>1.32</td>
<td>1.32</td>
<td>0.60</td>
<td>0.60</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>Floral waste</td>
<td>–</td>
<td>2.30</td>
<td>0.30</td>
<td>1.32</td>
<td>1.32</td>
<td>0.60</td>
<td>0.60</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>Flora compost: C compost</td>
<td>–</td>
</tr>
</tbody>
</table>

References 26–29
and nitrogen excrements contribute to the increment in nitrogen levels, thus reducing the C/N ratio of the vermicompost. Apart from C/N ratio, NO₃/NH₄⁺ ratio is also a reliable indicator to provide information on the maturity and stability of organic fertilizer. Total nitrogen consists of inorganic forms of nitrogen, namely NH₄⁺ (ammoniacal nitrogen) and NO₃⁻ (nitrate nitrogen). During the vermicomposting process, high levels of NH₄⁺ are released and converted into NO₃ through the nitrification process. The nitrification process is indicative of a stable vermicompost. A decrease in NH₄⁺ and an increase in NO₃ led to an overall increase of the NO₃/NH₄⁺ ratio, which is an indication of the maturity of the vermicompost. The maturity and stability of vermicomposts could also be determined using physical tests such as the colour of the substrates and scanning electron microscopy (SEM) images as well as biological tests such as enzyme activities, microbial population and germination index.

According to Chauhan and Joshi, increases in nitrogen, phosphorus, and calcium and magnesium were observed in the treatment using Eisenia fetida in vermicomposting of some dangerous and toxic weeds. Nath et al. reported that there were significant increases in total nitrogen, total phosphorus, total potassium and total calcium in the final vermicompost using feedstock of different animal, agro and kitchen wastes by Eisenia fetida. Similar results were obtained by Gupta and Garg who showed that total nitrogen, total phosphorus and total potassium were higher in vermicompost of primary sewage sludge mixed with cow dung. Likewise, vermicompost derived from rice residues mixed with cow dung using Eudrilus eugeniae showed an increase in macronutrient content (such as calcium, magnesium, phosphorus and potassium) in a study by Shak et al. Vermicompost acts as a bioinoculant by increasing the availability of the nitrogen and phosphorus through improving biological nitrogen fixation and phosphorus solubilization.

An application of vermicompost stimulates root growth and facilitates nutrient absorption, and hence favours higher percentage yield. Therefore, vermicompost generally contains higher and more soluble levels of major nutrients required for plant growth (Table 1) such as nitrogen, phosphorus, potassium, calcium and magnesium as compared to normal compost. However, improvements in plant growth and increases in yields could not be entirely explained by the availability of macronutrients, as demonstrated by Arancon et al. In their experiment, all vermicompost treatments were supplemented with inorganic fertilizers to equalize macronutrient availability at transplanting time. Since all plants received all needed nutrients, the contribution of nutrients from the mixtures on plant growth could be virtually eliminated as an influence factor. The result suggests that biologically active plant growth-influencing substances appeared as plant growth regulators or humic acids in the vermicomposts, which were also responsible for improving plant growth.

Micronutrients, which are also known as trace elements, are required in small amounts to enhance plant growth. However, in higher concentration they are likely to have unfavourable effects on plant growth. Earthworms are able to counter this effect by accumulating particular metals through their intestine as well as through the skin, hence reducing specific total potentially hazardous element. Nevertheless, a high concentration of heavy metals could lead to earthworm mortality. For example, Domínguez-Crespo et al. demonstrated 100% earthworm mortality at a Cd concentration of 643.86 mg kg⁻¹. Generally, the amount of heavy metals that could be accumulated in earthworm tissues is dependent on the earthworm species as well as the adaptability of the earthworms in the feed substrate (organic wastes). Earthworms are also more inclined to accumulate and regulate one type of heavy metal over another, such as Zn as compared to Cu. Physiochemical factors such as pH, calcium concentration and organic matter content in the wastes also influence the accumulation of heavy metals in the gut of earthworms. In short, the capacity of the earthworm to bioaccumulate a number of metals leads to lower concentrations of heavy metals in the vermicomposts, indirectly reducing the risk of entering the plant system and subsequently the food chain.

EFFECT OF VERMICOMPOST ON SOIL FERTILITY

Vermicompost not only acts as a source of nutrients and organic matters, but it can also increase the size, biodiversity and activity of the microbial population in soil. In addition, vermicompost can positively affect the structure, nutrient turnover and many other properties of the soil. Nowadays, the use of organic amendments is gaining popularity in sustainable crop production and soil nutrient management, because long-term application of inorganic fertilizers without organic supplements could potentially damage the properties of soil. For example, Biau et al. showed that the application of mineral fertilizer alone over a 10-year period led to a higher residual nitrate content in the soil, which increased the risk of leaching. Conversely, Rasool et al. showed that long-term application of balanced inorganic fertilizers resulted in decreased soil bulk density, and increased total porosity and water-holding capacity. Inorganic fertilizer also improved soil aggregation in deeper soil layers as well as increased the grain and straw yields of both maize and wheat. In their study, the use of farmyard manure (organic fertilizer) instead of inorganic fertilizer also resulted in similar improvements to the soil properties. Thus organic fertilizer has the potential to become a good substitute for inorganic fertilizer but the most recent studies have pointed out that an integration of organic and inorganic fertilizer could sustain soil fertility and produce the best crops.

Vermicompost is usually in the shape of a granular or spindle-like mass that may form a 2–3 cm high heap, as produced by Eudrilus eugeniae or Perionyx excavatus. According to Lim et al., SEM showed two distinctive morphologies between initial waste mixture and final vermicompost of palm oil mill effluent amended with rice straw. The SEM image revealed that the initial waste mixture was characterized by long fibres, while the final vermicompost was more fragmented and porous, in which case the latter is more suitable for use as an organic fertilizer. Vermicompost contains high level of plant growth hormones and soil enzymes, while enhancing the microbial populations in soil and retaining its nutrients over a longer period of time without having an adverse impact on the environment. Thus vermicompost could be used either as soil additives or components of greenhouse bedding plant container media, for improving seed germination, enhancing seedling growth and development as well as increasing overall plant productivity.

The effects of vermicompost on the growth of other plants have been evaluated by other researchers through various greenhouse and field studies, including cereals and legumes, vegetables, ornamental and flowering plants and field crops. Table 2 summarizes the effects of vermicompost, compost and inorganic fertilizer on the growth of various plants in terms of root and shoot dry weight, root/shoot ratio, number of leaves per plant, leaf area and the mean plant height.
Table 2. Effect of fertilizer (vermicompost/inorganic fertilizer/compost) on the growth of various plants

<table>
<thead>
<tr>
<th>Plant</th>
<th>Concentration of vermicompost (VC)/control</th>
<th>Feedstock of vermicompost/control</th>
<th>Days after planting</th>
<th>Root dry weight</th>
<th>Shoot dry weight</th>
<th>Root/shoot ratio</th>
<th>Average number of leaves per plant</th>
<th>Leaf area (cm²)</th>
<th>Mean plant height (cm)</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Queen Sophia' French Marigold</td>
<td>1:4 (VC:MM360) Pig manure</td>
<td>MM360</td>
<td>12*</td>
<td>0.021 g</td>
<td>0.037 g</td>
<td>0.57</td>
<td>–</td>
<td>10.16</td>
<td>–</td>
<td>• Root and shoot dry weight are of seedling plugs</td>
<td>22</td>
</tr>
<tr>
<td>'Rutgers' tomato</td>
<td>1:4 (VC:MM360) Pig manure</td>
<td>MM360</td>
<td>12*</td>
<td>0.018 g</td>
<td>0.042 g</td>
<td>0.43</td>
<td>–</td>
<td>12.62</td>
<td>–</td>
<td>• NPK dose: 20:80:40 kg ha⁻¹</td>
<td>16</td>
</tr>
<tr>
<td>'California Wonder' pepper</td>
<td>1:4 (VC:MM360) Pig manure</td>
<td>MM360</td>
<td>12*</td>
<td>0.009 g</td>
<td>0.040 g</td>
<td>0.23</td>
<td>–</td>
<td>8.41</td>
<td>–</td>
<td>• NPK dose: 20:80:40 kg ha⁻¹</td>
<td>16</td>
</tr>
<tr>
<td>'Imperial' cornflower</td>
<td>1:4 (VC:MM360) Pig manure</td>
<td>MM360</td>
<td>12*</td>
<td>0.007 g</td>
<td>0.011 g</td>
<td>0.64</td>
<td>–</td>
<td>2.74</td>
<td>–</td>
<td>• NPK dose: 20:80:40 kg ha⁻¹</td>
<td>16</td>
</tr>
<tr>
<td>Tomato (Lycopersicum esculentus)</td>
<td>1:1 (VC:soil) Sheep manure</td>
<td>Soil</td>
<td>100</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>127</td>
<td>70</td>
<td>–</td>
<td>• VC application rate: 1 t ha⁻¹</td>
<td>50</td>
</tr>
<tr>
<td>Bean (Phaseolus vulgaris)</td>
<td>1:1 (VC:NPK) Sugar mill wastes</td>
<td>Soil</td>
<td>60</td>
<td>2.01 g per plot</td>
<td>5.80 g per plot</td>
<td>0.35</td>
<td>–</td>
<td>210.7</td>
<td>–</td>
<td>• VC application rate: 1 t ha⁻¹</td>
<td>50</td>
</tr>
<tr>
<td>Chilli (Capsicum annum)</td>
<td>VC Banana leaves, cow dung</td>
<td>Soil</td>
<td>60</td>
<td>0.87 g per plot</td>
<td>3.80 g per plot</td>
<td>0.23</td>
<td>–</td>
<td>91.8</td>
<td>–</td>
<td>• VC application rate: 1 t ha⁻¹</td>
<td>50</td>
</tr>
<tr>
<td>Zea mays (VC)</td>
<td>Cow dung, crop/plant residues</td>
<td>Soil</td>
<td>60</td>
<td>86.03 kg ha⁻¹</td>
<td>1134.05 kg ha⁻¹</td>
<td>0.08</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>• Compost application rate: 2.25 t ha⁻¹</td>
<td>50</td>
</tr>
<tr>
<td>Phaseolus vulgaris</td>
<td>Cow dung, crop/plant residues</td>
<td>Soil</td>
<td>60</td>
<td>59.20 kg ha⁻¹</td>
<td>915.75 kg ha⁻¹</td>
<td>0.06</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>• Compost application rate: 2.25 t ha⁻¹</td>
<td>50</td>
</tr>
<tr>
<td>Abelmoschus esculentus</td>
<td>Cow dung, crop/plant residues</td>
<td>Soil</td>
<td>60</td>
<td>34.80 kg ha⁻¹</td>
<td>754.0 kg ha⁻¹</td>
<td>0.05</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>• Compost application rate: 2.25 t ha⁻¹</td>
<td>50</td>
</tr>
<tr>
<td>Plant</td>
<td>Feedstock of vermicompost/ control</td>
<td>Days after planting</td>
<td>Root dry weight (kg/ha)</td>
<td>Shoot dry weight (kg/ha)</td>
<td>Root/shoot ratio</td>
<td>Average number of leaves per plant</td>
<td>Leaf area (cm²)</td>
<td>Mean plant height (cm)</td>
<td>Comments</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>------------------------------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Bean (Phaseolus vulgaris) 1:81 (VC:soil)</td>
<td>Biosolid, manure</td>
<td>60</td>
<td>2.1 g</td>
<td>–</td>
<td>–</td>
<td>14</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Inorganic fertilizer</td>
<td>Control Soil</td>
<td>60</td>
<td>1.7 g</td>
<td>–</td>
<td>–</td>
<td>11</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Bean (Phaseolus vulgaris) 1:8 (VC:soil)</td>
<td>Wastewater sludge</td>
<td>117</td>
<td>1.4 g</td>
<td>5.0 g</td>
<td>0.28</td>
<td>–</td>
<td>–</td>
<td>32.3</td>
<td>–</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Okra (Abelmoschus esculentus) 1:50 (VC:soil)</td>
<td>Cattle dung, grass clippings</td>
<td>42</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>12</td>
<td>39.33</td>
<td>–</td>
<td>–</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Marigold</td>
<td>Control Soil</td>
<td>42</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>9</td>
<td>31.67</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>‘Chandler’s’ strawberry VC 1:9 (VC:soil)</td>
<td>Vegetable waste, cow dung</td>
<td>180</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>501.9</td>
<td>–</td>
<td>–</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Cicer arietinum</td>
<td>VC</td>
<td>75</td>
<td>~60</td>
<td>~60</td>
<td>~60</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Pisum sativum var. arvense</td>
<td>VC</td>
<td>75</td>
<td>~25</td>
<td>~25</td>
<td>~25</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>French bean (Phaseolus vulgaris L.) 125:1 (VC:NPK)</td>
<td>Crop residues, cow dung</td>
<td>145</td>
<td>0.229 g per plant</td>
<td>4.887 g per plant</td>
<td>0.05</td>
<td>17.3</td>
<td>624.4 cm² per plant</td>
<td>–</td>
<td>–</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VC</td>
<td>145</td>
<td>0.218 g per plant</td>
<td>3.805 g per plant</td>
<td>0.06</td>
<td>15.2</td>
<td>504.9 cm² per plant</td>
<td>–</td>
<td>–</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Pisum sativum</td>
<td>VC</td>
<td>28</td>
<td>10.42 g</td>
<td>–</td>
<td>–</td>
<td>51</td>
<td>307.8 cm² per plant</td>
<td>–</td>
<td>–</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Pitcompost</td>
<td>VC</td>
<td>28</td>
<td>6.22 g</td>
<td>–</td>
<td>–</td>
<td>46</td>
<td>12</td>
<td>–</td>
<td>–</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Lettuce (Lactuca sativa L.) 1:9 (VC:soil)</td>
<td>Cattle manure</td>
<td>60</td>
<td>3.51 g per plant</td>
<td>–</td>
<td>–</td>
<td>26.83</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Inorganic fertilizer</td>
<td>Control Soil</td>
<td>60</td>
<td>2.12 g per plant</td>
<td>–</td>
<td>–</td>
<td>27.00</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Control Soil</td>
<td>VC</td>
<td>60</td>
<td>3.00 g per plant</td>
<td>–</td>
<td>–</td>
<td>23.83</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

* VC application rate: 7.5 t ha⁻¹
* NPK dose: 120:170:150 kg ha⁻¹
* VC application rate: 148 t ha⁻¹
* VC application rate: 148 t ha⁻¹
* VC application rate: 148 t ha⁻¹
* VC application rate: 7.5 t ha⁻¹
* NPK dose: 75:125:10 kg ha⁻¹
* VC application rate: 5 t ha⁻¹
that plant height, shoot and root weight were highest in the vermicompost-treated plots as compared to compost or soil plots. Most of the investigations have confirmed that vermicompost has significant beneficial effects on plant growth. Furthermore, incorporation of earthworms into the soil structure may lead to a major impact on physical and chemical properties in the soil, as well as the activity of other organisms such as nematodes and collembolans living within it. The combination of vermicompost and inorganic fertilizer (NPK) also yielded higher leaf area, shoot and root weight for *Phaseolus vulgaris* as compared to vermicompost or inorganic fertilizer alone.

EFFECTS OF VERMICOMPOST ON THE PHYSICOCHEMICAL PROPERTIES OF SOIL

Vermicompost could improve the physical structure of the soil such as porosity, aeration, drainage, resistance to corrosion and infiltration, thus providing a better medium for root growth. For example, Manivannan *et al.* found that the use of vermicomposts improved the physical properties of soil, which further increased the growth, yield and quality of beans. Earlier studies have shown that vermicompost appeared to be enriched with polysaccharides. In the soil, polysaccharide acted as a cementing substance, which caused aggregate stability, to create and maintain the soil structure for better aeration, water retention, drainage and aerobic conditions. The maintenance of soil structure is very useful for root development and nutrient availability to the plants. The addition of mucus secretion from the earthworm’s gut and microorganisms in the gut enhances the aggregate stability of the soil. An increase in water retention capacity of soil is due to the absorbent organic matter in vermicomposts, which holds only the necessary amount of water required by the plant roots. A reduction in bulk density of the soil treated with vermicompost was also noted by Manivannan *et al.* Decreases in particle and bulk densities were mainly due to the enhanced microbial population and activity, which resulted in the formation of aggregates and increased porosity of the soil. Vermicomposts have been reported with a higher base exchange capacity and a larger increase in oxidation potential.

Vermicompost could serve as a naturally produced, slow-release source of plant nutrients and their amendment has been shown to increase plant dry weight and plant nitrogen uptake. Vermicompost contains nutrients in forms that are readily taken up by plants, such as nitrates, exchangeable phosphorus and soluble potassium, calcium and magnesium, with most of the nitrogen in the nitrate, NO₃⁻ form rather than the ammoniacal form. Although chemical fertilizers have more nutrients listed than vermicomposts, the ability of plants to absorb nutrients from chemical fertilizers is restricted owing to the nutrients that are not broken down in a form ready for plant absorption. Also, Lazcano *et al.* found that the effect of vermicompost on plants was dependent on its dosage as well as plant species and genotype. Thus the best way to supply nutrients to the plant is by ensuring the appropriate level of chemical fertilizer and/or vermicompost in one specific plant. For instance, Kalantari *et al.* found that the best corn growth occurred in both 3% vermicompost + sulfate and 3% vermicompost treatments. In addition, due to the slow release of nutrients such as organic nitrogen from vermicomposts, plants are less susceptible to pest attacks. A considerable decrease in attacks by jassid (*Empoasca verri*) and aphid (*Aphis craccivora*) was reported by Rao in response to field applications of...
vermicomposts. Possible reasons include changes in nutrient characteristics and balance of plants in response to vermicomposts.

Manivannan et al. also showed that the available N, P, K, total Ca, Mg, Na, Zn, Fe, Cu and Mn were significantly increased in soil treated with vermicompost. Similarly, Pramanik et al. and Doan et al. showed that an application of vermicompost increased the mineralizable nitrogen and available phosphorus content in the soil. Vermicompost usually has a lower C/N ratio, indicating that it is more suitable for use as a soil amendment. In fact, vermicomposts can be extremely rich in available nutrients depending on the parent material, allowing not only an instantaneous supply of plant nutrients but also increasing reserves for future crops. A very common problem associated with nutrients in soils is that they are easily leached away. However, Bhattacharjee et al. reported that the application of vermicompost reduced the loss of nutrients through leaching from the soil by changing the physio-chemical properties of the soil. Masiandaro et al. reported that at the end of the experimental period the amount of nitrates in cow manure vermicompost was lower due to plant absorption, hence decreasing the risk of NO_3^- nitrogen leaching from the organic amendment.

The use of vermicompost must be carried out with caution, because Warman and AngLopez found that although percentage germination of radish, marigold and upland cress increased with maturation of the vermicompost, the addition of vermicompost to the soil or water often resulted in poorer germination as compared to the control. They hypothesized that organic substances in the vermicompost, rather than soluble salts, might contribute to phytotoxicity. The reduction in growth and productivity after incorporation of vermicomposts at high concentrations could be due to the reduced aeration and porosity in the medium, increased salt concentrations as well as high concentrations of heavy metal and phytotoxic substances. Atiyeh et al. reported that when the concentration of vermicompost in the potting medium approached 100%, high concentrations of soluble salts in the vermicompost and poor porosity or aeration in the medium would affect root growth and proliferation. Also, immature vermicompost is harmful to plants. Thus the use of immature vermicompost indirectly causes inhibition of seed germination, root destruction and inhibition of plant growth.

Vermicompost can be used as a bio-remedial measure to reclaim problems in soils, especially acid soils, because of the near-neutral to alkaline pH of vermicompost and the suppression of labile aluminium. However, Gutiérrez-Miceli et al. found that there was no change in pH when vermicompost was applied to soil, whereas both Atiyeh et al. and Manivannan et al. also reported a slight decrease in pH of vermicompost-treated soil and postulated that the decrease might be due to the acidifying effects of organic acids produced during the course of decomposition of organic amendments and/or the increased permeability and leaching of salts. Another study conducted by Lazcano and Domínguez reported that increasing amounts of commercial vermicompost produced higher pH values but lower pH with increasing amounts of pig slurry vermicompost. Differences in the changes of pH in soil reported by different researchers seem to be related to the different types of vermicompost and/or soil characteristics. For example, Fernández-Bayo et al. showed that an addition of vermicomposts increased soil pH in the case of acidic soil but reduced soil pH in alkaline soil. These studies led to the observation that the addition of vermicomposts changed the soil pH to neutral levels. Nevertheless, pH ranging between 6 and 7 seems to promote the availability of nutrients to the plants, hence making vermicompost a suitable soil amendment. Gutiérrez-Miceli et al. reported that both concentrations of NH_4^+ and NO_3^- were low but NO_2^- concentrations were high in soil incorporated with vermicompost, indicating that ammonification and nitrification were not inhibited. On the other hand, some studies proved that fresh vermicomposts contain high levels of ammonium, but the existence of a large population of autotrophic nitrifiers (Nitrosomonas and Nitrobacter) will cause rapid nitrification, resulting in stable levels of both nitrogen forms (NH_4^+ and NO_3^-) due to organic matter protection in the vermicomposts.

Ammonium ions can be adsorbed on to the negative charges of the substrates, leached, taken up by plants, or converted to nitrates via aero-bic nitrification processes due to increased microbial activity in vermicompost-substituted substrates, thereby providing a slow release of nitrates. Due to changes in the distribution of K between exchangeable and non-exchangeable K forms, the availability of K is increased considerably during the vermicomposting process. As a matter of fact, earthworms cannot increase the total amount of K but can make the nutrients more available. Thus vermicomposts have a higher level of available nutrients for plants as compared to soil. It has also been suggested that earthworms can increase metal mobility, though further studies are required. Through the action of earthworms, the rate of nutrient recycling is increased, and thus the available quantity of nutrients, such as K, to the plants is enhanced as well. Other chemical analyses of vermicomposts indicate higher amounts of nutrients in available forms such as magnesium, nitrogen, phosphorus and potassium than those in the parent substrate. This phenomenon makes vermicomposts suitable for agricultural application with adhesive effects for the soil and stimulators for plant growth.

Electrical conductivity (EC) of vermicompost is dependent on the raw materials used for vermicomposting and is also related to their ion concentration. EC was observed in soils treated with vermicompost where ragi and cowpea were grown. The reduction in EC could be due to stabilization of the raw materials. Similarly, Aityeh et al. reported a decrease in EC at the end of the growth study, indicating that high soluble salt concentrations in vermicompost produced from pig manure were successfully leached. An addition of vermicompost to the soil increased the exchangeable Ca^{2+} concentration, which led to higher Na^+–Ca^{2+} exchange at the soil's cation exchange sites, allowing higher leaching of exchanged Na^+ and subsequently lower EC of soil. In addition, vermicompost helps improve the porosity of soil and infiltration rate, which also enhances salt leaching. Fernández-Gómez et al. suggested that vermicompost with EC values lower than 1.5 (stabilized material) and 4.0 dS m$^{-1}$ are suitable for application as growing media and for organic soil amendments, respectively.

Vermicompost is reported to show hormone-like activity, and this has been hypothesized to result in greater root initiation, root biomass, plant growth and development, as well as morphology changes in plants grown in vermicompost-amended media. There is some likelihood that the enhanced plant growth is due to the presence of plant hormone-like activity produced by microflora during vermicomposting, and also the presence of metabolites as a result of secondary metabolism. Vermicomposts contain plant growth hormones such as auxins, gibberellins and cytokinin produced by microorganisms during the process of vermicomposting. These substances may be partially responsible for the increases in germination, growth and yield of plants, since there is clear evidence from greenhouse trials that they could
produce significant growth effects independent of nutrients.44,94 It was shown that earthworm activity could promote the production of cytokinins and auxins in organic waste dramatically.45 Tomati et al.95 also reported that earthworm-digested sewage sludge was rich in microorganisms, especially bacteria, and contained large amounts of plant hormones. Other researchers also demonstrated that plant growth hormones extracted from vermicomposts could have significant effects on plant growth.96,97

Plant hormones are dose specific and play a fundamental role in plant metabolism. They could influence plant growth and development as well as crop quality significantly, although the hormones are present at very low concentrations.76 Previous experiments reported that some of the slower growth rates of plants when applied with vermicomposts showed a response to higher concentrations of plant growth hormones such as auxins and humic acids, which were produced by microorganisms in the vermicomposts. Auxins can increase growth at lower concentrations, but they can also reduce the rates of growth and development of plants when applied at high concentrations beyond the optimum value. For example, the optimum percentage of vermicompost for promoting maximum growth of petunia was approximately 30–40%, but a higher percentage of vermicompost (>40%) would in fact dwarf the growth of petunia.45,96

The stimulation of plant germination and growth is due to the reduction in total and monomeric phenolic compounds. The mineralization of lignin–cellulose substrates and the metabolic processes of plants stimulate the release of phenolic monomers, hence explaining the reduction in these compounds.85 Consistent results were obtained by Hachicha et al.98 who revealed a direct connection between polyphenol content and toxicity. Masciandaro et al.99 also demonstrated that a large reduction in toxicity of olive mill wastewater at the end of the vermicomposting process stimulated seed germination and plant growth.

Apart from plant growth hormones, humic acids could also be responsible for the enhanced growth patterns of plants.96 Stimulation of root growth, increased proliferation of root hairs and enhancement of root initiation by humic acids have commonly been reported by several other researchers.94,96 Masciandaro et al.99 reported positive growth responses of plants after adding humic material extracted from vermicomposts. Similarly, Canellas et al.100 confirmed the role of humic acid extracted from vermicompost as plant root growth promoters. These humic substances occur naturally in mature animal manure, sewage sludges or paper mill sludges, but their amounts and rates of productions are increased greatly through vermicomposting.101

Vermicompost contains high amounts of humic acid and biologically active substances such as plant growth regulators.16,102 Most studies have reported that substitutions of 20–40% of vermicomposts in a commercial growth medium have beneficial effects on germination, plant growth and yield.102 It seems very likely that vermicomposts, which consist of an amalgamate of humified earthworm faeces and organic matter, could stimulate plant growth. Beyond that, mineral nutrients are produced because of the effects of the humic substances present in vermicomposts and because of the plant growth regulators associated with humic acids.94 Atiyeh et al.94 also stated that consistent enhancements in plant growth were mainly due to their humic acid content in vermicomposts, and not nutrient changes. Nevertheless, humic acid has been shown to increase nutrient accumulation in conditions of limited nutrient availability and when additional nutrients were supplied.22

The positive influence of humic acids on plant growth and productivity could be due to hormone-like activities of the humic acids through their involvement in cell respiration, photosynthesis, oxidative phosphorylation, protein synthesis and various enzymatic reactions.94 Plant growth hormones can be adsorbed on to the complex structure of humic acids, which are produced very rapidly in vermicomposts.103 Both plant growth hormones and humic acids may act together to increase plant growth.58

EFFECTS OF VERMICOMPOST ON THE BIOLOGICAL PROPERTIES OF SOIL

Recent studies found that the levels of soil organic matter, soil microbial biomass and activities were enhanced by using organic fertilizers such as vermicompost.16 An increase in plant growth could also be attributed to biological effects, such as increases in beneficial enzymatic activities and populations of beneficial microorganisms, as well as the presence of biologically active plant growth-influencing substances such as plant growth regulators or plant hormones104 and humic acids97 in the vermicomposts. Table 3 shows the microbial population in the vermicomposts produced from different wastes.25,39,73,105–108

Dehydrogenase enzyme activity, which is often used as a parameter to measure the respiratory activity of the microflora community, was found to be greater in vermicompost as compared to commercial medium.76 There was initially a significantly lower dehydrogenase activity in the soil, occurring in vermicompost-treated plots at the time of transplanting. This phenomenon could be due to an inhibitory effect, resulting from the introduction of ‘foreign’ soil microorganisms from the vermicomposts to the exotic microflora.96 This phenomenon, in turn, has triggered competition among the microorganisms. The application of vermicompost as a bioinoculant helps introduce beneficial microorganisms into the rhizosphere of the plant, which then stimulates the nitrogenase enzyme responsible for nitrogen fixation of atmospheric nitrogen in legumes. Thus the nitrogen status of the soil will be enriched, thereby increasing the availability of nitrogen in the soil.81 Likewise, increased P availability due to the increase in solubility of P by higher phosphatase activity could also be achieved by vermicompost application.43 Dinesh et al.109 showed that a mixture of organic manures (farmyard manure, vermicompost, neem cake and ash) and biofertilizer application to soil increased the activities of dehydrogenase, acid phosphatase and \(\beta\)-glucosidase. \(\beta\)-Glucosidase and phosphatase are enzyme activities of special interest when processes of organic matter stabilization are being monitored, since they are hydrolytic enzymes involved in the C and P cycles, respectively.110 These soil biochemical parameters are considered potential indicators of soil quality.109

Vermicompost application also suppresses the growth of many parasitic fungi, such as *Pythium*, *Rhizoctonia* and *Verticillium*, and as a result many plant diseases are suppressed when vermicompost is applied in ample quantity in the field.67 Vermicomposts are also shown to suppress plant parasitic nematodes and enhance the activity of vesicular arbuscular mycorrhizae.44,94 Statistically, *Eisenia fetida* reduced the population of plant-parasitic nematodes by more than 60% in soil cultures, 98.8% in casts and 50% in cultures with alfalfa root tissue. Also, it was found that the populations of plant parasitic nematode were reduced by introducing eight lumbricid species.111 Hyvönen et al.112 commented that
the presence of active *Dendrobaena octaedra*, and as a consequence of predation rather than competition for the same food intake (bacteria or protozoa), resulted in a reduction of plant parasitic nematode populations. Likewise, Senapatit reported that a reduction of 20–50% in the number of plant parasitic nematodes in the presence of the tropical earthworm *Lampito mauritii*. Therefore, the community of nematodes, which was dominated by bacterivores, was lowered by more than 50% due to earthworm activity.111

Generally, vermicompost provides larger particulate surface areas that help provide many microsites for microbial activities and stronger retention of nutrients.46,67 In general, composts stimulate nutrient uptake and assimilation as well as displaying hormone-like activity.22 According to Arancon et al.,44 the improvements in plant growth and increases in fruit yields could be partly due to large increases in soil microbial biomass after vermicompost applications, leading to production of hormones or humates in the vermicomposts, which could be considered as plant growth regulators. The fact that vermicompost treatment has favourably affected biomass accumulation is due to the better synchrony of nutrient release and uptake, as evidenced by the significant positive correlation between biomass accumulation and nutrient mineralization pattern but negative correlation between productivity and available nitrogen in the soil.99 Chaoui et al.17 showed that the slower release of fertilizers increased plant biomass, which was more synchronized with the plant's requirements. Vermicomposts were also less likely to produce salinity stress as compared to compost and synthetic fertilizers.

In general, these plant growth-regulating materials are produced by the action of earthworms67 and microbes such as fungi, bacteria and actinomycetes.114 According to Atiyeh et al.,76 microorganisms not only mineralize complex substances into plant available nutrients but can also synthesize a whole series of biologically active substances, including plant growth regulators. Nevertheless, scientific data on the type of extent of growth effects caused by plant growth regulators (which are due to soil microbial activity) from vermicomposts are still sparse.

ECONOMIC ANALYSIS OF ORGANIC FERTILIZER IN AGRICULTURE SECTOR

Over the last few years, the global demand for fertilizer has continued to increase. In 2011/12, the world fertilizer demand increased by an estimated 14.3% (177.0 Mt) following the downturn in 2008/09. The demand for fertilizer is strongly correlated with high agricultural commodity prices. Farmers respond to attractive international prices for crops like maize, wheat and soybean by attempting to increase their productivity. Subsequently, this decision leads to an increase in fertilizer consumption. It is forecasted that by the year 2016/17 the world demand for fertilizer will reach 192.8 Mt.115 The use of chemical fertilizers alone, which has long been promoted for its higher productivity in agriculture, is now being called into question. It is increasingly being realized that the intensive use of chemical fertilizers proves to be counterproductive in the long run. The use of chemical fertilizers on the soil over a longer period of time may affect its ability to sustain healthy plant growth and crop production. Besides, chemical based water-soluble fertilizer has a tendency to leach out, leaving soil hungry for nutrients.116 Therefore, alternatives to chemical fertilizers, such as organic fertilizers, are becoming increasingly important in the agricultural sector.117

Organic agriculture or organic farming involves production systems that avoid the use of any synthetic or chemical fertilizers, pesticides and genetically modified organisms.118,119 Organic fertilizers are derived mainly from the remains or by-products of biological organisms, manure and sewage sludge.117 For example, both composting and vermicomposting are used to bio-convert a variety of organic wastes into composts and vermicomposts, respectively, which could be used as growing media or soil enhancers.14

The emergence of organic agriculture can be traced back as far as 1924 in Germany. Since then, organic agriculture has grown tremendously as new ideas for using natural resources rationally, protecting the environment and, most importantly, ensuring a sustainable development of agriculture, emerge. Both governmental and non-governmental organizations have been promoting organic agriculture for decades, leading to a rapid growth of organic agriculture worldwide.118

Table 3. Microbial counts in various derivatives of vermicompost

<table>
<thead>
<tr>
<th>Waste</th>
<th>Bacteria</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Active</td>
<td>Yeast and mould</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Actinomycetes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>References</td>
</tr>
<tr>
<td>Kitchen waste (cfu × 10³ ml⁻¹)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Chicken manure (µg mL⁻¹)</td>
<td>43.8</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Paper mill sludge and cow dung</td>
<td>–</td>
<td>450–500</td>
</tr>
<tr>
<td>(cfu × 10⁵ g⁻¹)</td>
<td>–</td>
<td>18–26</td>
</tr>
<tr>
<td>Herbal pharmaceutical waste and cow dung</td>
<td>–</td>
<td>750–900</td>
</tr>
<tr>
<td>(cfu × 10⁵ g⁻¹)</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>Remarks</td>
<td></td>
<td>39</td>
</tr>
</tbody>
</table>

Organic agriculture is known to improve soil quality and fertility, control soil erosion, provide healthier food and contribute to the economy – specifically the rural economy. In the UK, the market for organic produce has grown from £100 million in 1993/94 to approximately £1.9 billion in 2006.112,112 It also reduces negative environmental effects from intensive agriculture,119 thus minimizing environmental pollution, reducing nutrient losses on farms and contributing to the economy.118

Generally, the economic profitability of an agricultural system can be measured through crop yield, gross margin, net return and cost–benefit ratio. In short, the farmer’s profit is directly proportional to crop yield price and inversely proportional to the cost of production. Farmers often lack control over prices they receive for their products or the prices they pay for their production input. Thus, in order to maximize their profitability, higher crop yield provides the greatest opportunity for reducing production costs.123 As for organic farming, its economic profitability is also characterized by reduced water use, nutrient contamination by pesticides, reduced soil erosion, lower carbon emissions and increased biodiversity to maximize profits.118

According to Beheraet al.,118 organic agriculture produces the same crop variants as those produced from conventional farming methods, but it involves 50% less expenditure on fertilizer and energy while retaining 40% more topsoil. Chouichom and Yamao117 reported that organic agriculture costs were approximately 33.5% less than conventional methods. However, no significant differences were found in harvest amount and market prices of rice between organic agriculture and conventional methods. In short, organic agriculture costs less and does not seem to affect the productivity of rice. A study on the effect on farm returns due to the shift from chemical-based agriculture to organic while keeping productivity constant was done by Ghosh.116 The research showed that substitution of chemical fertilizers with organic fertilizers may not, on the whole, hurt the income in most households. Also, the use of organic fertilizers seemed to be feasible as it managed to sustain crop yield levels.

In another study, Lobleyet al.122 focused on the economic aspects of rural development in relation to employment, purchases and sales of organic and non-organic agriculture. This study revealed that organic agriculture promoted employment which contributed to rural development. The organic agriculture businesses employed an average of 6.4 people per farm as compared to 4.8 people for non-organic agriculture. Organic agriculture also had a lower value of total purchases (£25 million) as compared to non-organic agriculture (£30 million). In farm sales, organic agriculture generates lower revenue per farm as compared to non-organic agriculture. If the values of sales generated per hectare were used as a basis for comparison, organic agriculture was proven to be better, with a revenue of £2837 ha−1 as compared to £1857 ha−1 for non-organic farming. Lobleyet al.122 also took into consideration the median values of the revenues and showed that only a handful of organic farms generated higher sales per hectare, whereas most organic farms performed at a similar level to non-organic farms.

Research into combining organic fertilizer with chemical fertilizer was also done by Kearneyet al.124 They found that by combining manure and inorganic fertilizers, there was a 26% increase in yield and a 40% increase in market value as compared to the use of inorganic fertilizer or manure alone. The input ratio of manure to inorganic fertilizer was also proven to be flexible, as there were no significant differences in biomass or market value for the various combinations. Thus the amount of manure and inorganic fertilizer could be adjusted in response to price fluctuations. There was a substantial increase in economic benefits to farmers when considering equivalent economic investment in fertility inputs.124 Similarly, Dasset al.125 conducted a 3-year study on the growth of winter vegetables such as bell pepper and cabbage using various nutrient management systems. Of all the nutrient management strategies used, the system that combined both inorganic fertilizers and vermicompost was found to produce the highest crop yield. The combination of inorganic fertilizers with vermicompost system also yields the highest gross revenues and gross margin. In the same study, the nutrient management systems encompassing inorganic fertilizer, vermicompost and cow manure also had relatively high crop yields, gross revenues and gross margins.125

CONCLUSION AND FUTURE PROSPECTS

The availability of macronutrients and micronutrients is generally higher in vermicompost than in the traditional compost and inorganic fertilizer, indicating that vermicompost is a better supplement to improve and stimulate plant growth. Thus vermicompost has a huge potential for use on agricultural crops. In the near future, vermicomposts should be largely and extensively applied to agricultural land to replace or, alternatively, combine with inorganic fertilizers.

Vermicompost is shown to improve soil fertility in terms of physical and chemical properties of the soil. Physical improvements include better aeration, porosity and bulk density of the soil. Chemical properties such as pH, electrical conductivity and organic carbon content are also enhanced for better plant growth. However, it is found that the nutrient factor of vermicomposts does not provide sufficient evidence to fully explain the enhanced plant growth, suggesting that there are other plant growth-influencing materials in vermicomposts that could be responsible. These plant growth-influencing substances include humic acids, and plant growth hormones such as auxins, gibberellins and cytokinins. Although vermicomposts have been shown to improve plant growth, the application at high concentrations of vermicomposts could lead to slower plant growth, implying that vermicomposts should be applied at appropriate concentrations in order to obtain maximum plant yield.
Interactions among earthworms, microorganisms in soil and vermicomposts are all interdependent, and the relationships among all of them are of major importance in producing a high quality of organic fertilizers. Some species of microorganisms are not digested, and hence the population size is enhanced in the gut and finally in the casts. However, some species of microorganisms are killed during passage through the gut of earthworms. These microorganisms are the food source of earthworms. Generally, an increase in microbial populations in vermicomposts is significant, resulting in richer microbial diversity, populations and activities in vermicomposts. However, some recent studies showed that although vermicompost is apparently more effective than compost in improving soil rehabilitation, the positive effect of vermicompost on soil chemical properties could be reduced in the presence of exotic or endogeic earthworms.\(^{53,126}\) The reasons for this negative effect are still unclear but Jouquet et al.\(^ {127}\) suggested two interesting hypotheses: (a) a lower degradability of vermicompost as compared to compost and a possible competition for nutrients among microorganisms, plants and earthworms; (b) a modification of soil physical parameters and a reduction of soil bulk density or hydraulic conductivity.

In addition, as organic agriculture continues to grow at a global scale, organic fertilizer such as vermicompost are needed to sustain the yield and growth of organic crops as a whole. The future of organic farming involves improving and developing current technologies to improve fertilizer efficiency in terms of nutrient supply and utilization of locally available organic fertilizer resources. The current use of organic fertilizer by farmers is still low due to its higher retail price as compared to synthetic fertilizer. Also, certain obstacles encountered by small-scale farmers cannot be dismissed: for instance, the lack of knowledge and experience in organic farming in order to address the insufficient knowledge and experience in organic fertilizer use; poor ability to react to unpredicted external factors such as drought, sudden arrival of new diseases and pests; high certification cost; difficulty in assessing organic matter and bias of most legal structures in favour of conventional agriculture.\(^ {117,121}\) More research therefore needs to be conducted to address farmers’ concerns. For example, innovative and effective agricultural service systems could be implemented and developed to educate and assist farmers on the mechanics of organic farming in order to address the insufficient knowledge and experience in sustaining an organic agricultural system.\(^ {123}\) The studies reported here have described several agricultural systems that utilize only chemical fertilizer, organic fertilizer or a combination of the two. These systems have been proven to be effective and are able to increase the profitability of a farm. The scarcity of economic analysis on these systems prompts for more research to examine the economic sustainability of these systems over the long term.

ACKNOWLEDGEMENTS

The authors would like to thank the Department of Higher Education, Malaysia, for sponsoring this study under the Fundamental Research Grant Scheme of FRGS/1/2013/STWN03/ MUSM/02/1. In addition, the authors would like to thank Monash University Malaysia for providing SL Lim, PN Lim and KPY Shak with PhD scholarships.

REFERENCES

24 Shahi SK, Effect of organic manures, inorganic fertilizers and biofer-
25 Yadav KD, Tare V and Ahammed MM, Vermicomposting of source-
27 Morales-Corts MR, Gómez-Sánchez MA and Pérez-Sánchez R, Evaluation of green-pruning wastes compost and vermicompost, slumgum compost and their mixes as growing media for horticultur-
38 Fernández-Gómez MJ, Romero E and Nogales R, Feasibility of vermi-
46 Sharma S, Pradhan K, Satya S and Vasudevan P, Potentiality of earth-
47 Domínguez-Crespo MA, Sánchez-Hernández ZE, Torres-Huerta AM, Negrete-Rodríguez MLX, Conde-Barajas E and Flores-Vela A, Effects of the heavy metals Cu, Ni, Cd and Zn on the growth and repro-
duction of epigeic earthworms (E. fetida) during the vermistabiliza-
49 Wang L, Zheng Z, Zhang Y, Chao J, Gao Y, Luo X et al., Biostabiliza-
51 Blau A, Santiyeni F, Mijangos I and Lloveras J, The impact of organic and mineral fertilizers on soil quality parameters and the produc-
52 Rasool R, Kukal SS and Hira GS, Soil organic carbon and physical properties as affected by long-term application of FYM and inor-
59 Atiyeh RM, Subler S, Edwards CA and Metzger JD, Growth of tomato plants in horticultural potting media amended with vermicom-
62 Gutiérrez-Miceli FA, Santiago-Borraz J, Molina JAM, Nafate CC, Abud-Archorla M, Llaven MAO et al., Vermicompost as a soil sup-
The use of vermicompost in organic farming

